Data-based decisions under imprecise probability and least favorable models

نویسنده

  • Robert Hable
چکیده

Data-based decision theory under imprecise probability has to deal with optimisation problems where direct solutions are often computationally intractable. Using the Γ-minimax optimality criterion, the computational effort may significantly be reduced in the presence of a least favorable model. In 1984, A. Buja derived a necessary and sufficient condition for the existence of a least favorable model in a special case. The present article proves that essentially the same result is valid in case of general coherent upper previsions. This is done mainly by topological arguments in combination with some of L. Le Cam’s decision theoretic concepts. It is shown how least favorable models could be used to deal with situations where the distribution of the data as well as the prior is assumed to be imprecise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data-Based Decisions under Complex Uncertainty

Decision theory is, in particular in economics, medical expert systems and statistics, an important tool for determining optimal decisions under uncertainty. In view of applications in statistics, the present book is concerned with decision problems which are explicitly data-based. Since the arising uncertainties are often too complex to be described by classical precise probability assessments...

متن کامل

Scale Efficient Targets in Production Systems With Two-stage Structure Under Imprecise Data Assumption

Traditional data envelopment analysis (DEA) models evaluate two-stage decision making unit (DMU) as a black box and neglect the connectivity may exist among the stages. This paper looks inside the system by considering the intermediate activities between the stages where the first stage uses inputs to produce outputs which are the inputs to the second stage along with its own inputs. Additional...

متن کامل

The Efficiency of MSBM Model with Imprecise Data (Interval)

Data Envelopment Analysis (DEA) is a mathematical programming-based approach for evaluates the relative efficiency of a set of DMUs (Decision Making Units). The relative efficiency of a DMU is the result of comparing the inputs and outputs of the DMU and those of other DMUs in the PPS (Production Possibility Set). Also, in Data Envelopment Analysis various models have been developed in order to...

متن کامل

Using mechanisms built in a design class to test methods for decision under uncertainty

An approach for testing methods for decision-making under uncertainty has been proposed by the authors and their coworkers. The testing approach uses data for which the generating mechanism and probability distribution is unknown. The approach simulates a very large number of decisions and outcomes of uncertain events to test methods. The study presented in this paper follows the above approach...

متن کامل

A note on “Supplier selection by the pair of nondiscretionary factors-imprecise data envelopment analysis models”

   Recently, Farzipoor Saen [Journal of the Operational Research Society, 60(11), 1575–1582 (2009)] proposed a method based on data envelopment analysis to identify optimistic efficient suppliers in the presence of nondiscretionary factors-imprecise data. This short communication aims at showing a computational error in computing the value of preference intensity parameter in Farzipoor Saen’s [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2009